SL-1 Math
Summer Revielu

## Welcome to SL-1!

Often times over the summer it is easy to forget some of the things you have learned. Here at Calverton we like to send work home to be completed throughout the summer in order to help students start their next year off strong.

Please complete the attached worksheet throughout the summer and avoid completing them all in the week before school starts. Please make sure you show all your work along the way. This will count as your first grade and needs to be completed for the first day of school.

There is a video list to accompany the worksheets as well as a math help day for support in completing the required summer work.

Please email Mrs. Crissman acrissman@calvertonschool.org or Mr. Kerin wkerin@calvertonschool.org for any questions about the requirements.

Have a great summer!

Name:

## Number System

Define the following, write the symbol, and fill in the chart with at least 3 examples of each. Rational Numbers:

Integers:

Whole Numbers:

Natural Numbers:

Irrational Numbers

The Real Number System


Name:
Operations with Fractions and Decimals
Solve each expression by hand. Simplify answers completely.

| 1) $\frac{4}{12}+\frac{7}{12}$ | 4) $\frac{11}{15}-\frac{3}{15}$ |
| :--- | :--- |
| 2) $\frac{2}{3}+\frac{4}{9}$ | 5) $\frac{5}{8}-\frac{1}{2}$ |
| 3) $\frac{3}{6}+\frac{3}{5}$ | 6) $\frac{3}{4}-\frac{2}{3}$ |
| 11) $\frac{4}{11} \times \frac{6}{3}$ | 14) $\frac{4}{5} \div \frac{2}{8}$ |
| 12) $\frac{3}{8} \times \frac{5}{7}$ | 15) $\frac{2}{9} \div \frac{3}{10}$ |
| 13) $\frac{3}{6} \times 4$ | 16) $8 \div \frac{3}{4}$ |

Solve each expression

1. $14.4+6.912$
2. 18.7-9.35
3. $(2.13)(6.8)$
4. $(33.5)(0.17)$
5. $\frac{0.62}{6.8}$
6. $\frac{7.812}{0.03}$
7. $38.4+7.882$
8. $16.75-9.9$

Simplify each algebraic fraction.

1. $\frac{35 n}{40}$
2. $\frac{8 a}{24 a}$
3. $\frac{14 a n}{24 n}$
4. $\frac{15 a^{2} n^{2}}{18 a^{3} n}$
5. $\frac{2 a^{3} n^{4}}{10 a^{5} n}$
6. $\frac{a n^{2}}{a^{2} n}$
7. $\frac{4 x^{2}-8 x^{3} y^{2}}{2 x y}$
8. $\frac{n}{3 n^{2}}$

> Percent, Ratio, and Percent Change

Write the percent below in decimal form. Calculate the answer. Round to the nearest cent.
Decimal Form Answer

1. $37 \%$ of $\$ 82$
2. $6.5 \%$ of $\$ 70$
3. $150 \%$ of $\$ 8,300$
$\qquad$
4. $0.02 \%$ of $\$ 5420$
5. $\qquad$
6. $\qquad$
7. $\qquad$
$\qquad$
8. $19.99 \%$ of $\$ 3,125$
9. $\qquad$
10. $\qquad$
11. $\qquad$
$\qquad$
12. $100 \%$ of $\$ 750$
13. $0.5 \%$ of $\$ 1,000,000$
$\qquad$
$\qquad$
$\qquad$
14. $14.9 \%$ of $\$ 2,850$
15. 

$\qquad$
8. $14.9 \%$ of $\$ 2,850$
9. $\qquad$
10. $\qquad$
$\qquad$
9. $1.75 \%$ of $\$ 14,000$
10. $200 \%$ of $\$ 450$
$\qquad$

Convert the decimal or fraction to a percent.
11. 0.65
12. $\frac{1}{5}$
13. 0.87
14. 0.245
15. $\frac{2}{7}$
16. $\frac{4}{5}$
17. 1.3
18. 0.96

Calculate the following showing all your work.
19. The Morris family drove 405 miles in 9 hours. What was their average speed in miles per hour?
20. Corbin has 930 apple trees on his 5 -acre orchard. How many trees does Corbin have per acre?
21. Amanda bought 3 bottles of vitamins for $\$ 18$. What was the price per bottle?
22. Jose ran 6.6 miles on a treadmill. It took him 1.2 hours. What was his speed in miles per hour?
23. Jack bought 6 bananas for $\$ 0.45$. What was the unit price?

Calculate the percent change showing all your work.
24. In September, there were 16 members in the music club. In October, the number of members was 24 , What was the percent increase from September to October?
25. The population of a town in the year 2000 was 400 . If the population in the town increased to 500 in 2010, what is the percent increase in the population?
26. The price of a phone decrease from $\$ 180$ to $\$ 144$. Solve for the percent decrease.
27.20 out of 22 students passed the quiz. What percentage of students passed the quiz?
28. There are 3 red pencils and 17 blue pencils. What percent of pencils are blue?
$\qquad$

## Setting Up Proportions

Solve each proportion.

1. $\frac{7}{16}=\frac{x}{32}$
2. $\frac{7}{4}=\frac{21}{b}$
3. $\frac{y}{9}=\frac{4}{12}$
4. $\frac{5}{a}=\frac{9}{27}$
5. $\frac{18}{24}=\frac{6}{d}$
6. $\frac{15}{6}=\frac{n}{2}$
7. $\frac{r}{10}=\frac{21}{7}$
8. $\frac{4}{m}=\frac{8}{11}$
9. $\frac{17}{50}=\frac{x}{25}$

Write a proportion that could be used to solve each variable. After you have written all the proportions, go back and solve them if you have time.
10. 1 subscription for $\$ 21$

28 subscriptions for x dollars
12. 1 gallon of water weighs $8 \frac{1}{3}$ pounds 30 gallons of water weighs x pounds
14. 5 liters at $\$ 15.25$
x liters at $\$ 33.55$
11. 20 ounces at $\$ 7$

17 ounces at x dollars
13. 1 cm represents 3.5 km
2.4 cm represents x km
15. 3 packages of cheese for $\$ 7.17$

6 packages of cheese for x dollars
16. 225 bushels for 3 acres x bushels for 9.6 acres
18. 20 cm by 30 cm reduced to 12 cm by xcm
20. $\quad \frac{1}{4}$ in. represents 1 m 5 in. represents x m
22. 2 tires at $\$ 240$ x tires at $\$ 1080$
24. 450 km on 45 liters of gas 1500 km on x liters of gas
26. $\frac{1}{4}$ in. represents 1 ft x in. represents 25 ft
28. 2.5 pounds of meat for 2 dogs $x$ pounds of meat for 7 dogs
17. 25 cm by 35 cm enlarged to 150 cm by x cm
19. 64 ft of rope weighs 20 pounds 28 ft of rope weighs x pounds
21. 2 liters of orange juice at $\$ 3.58$

5 liters of orange juice at x dollars
23. 200 miles in 2.5 days x miles in 8 days
25. 3 shirts for $\$ 56.85$
x shirts for $\$ 132.65$
27. 5 hours for $\$ 53.75$

3 hours for x dollars
29. 2 inches of rain in 2.5 hours
3.6 inches of rain in $x$ hours

Name: $\qquad$ Date: $\qquad$

## Metric Conversion Worksheet

1. $5.712 \mathrm{~g}=$ $\qquad$ kg
2. $222.7 \mathrm{~L}=$ $\qquad$ dL
3. $16.45 \mathrm{~m}=$ $\qquad$ cm
4. $39.56 \mathrm{~g}=$ $\qquad$ mg
5. $10.5 \mathrm{~g}=$ $\qquad$ dkg
6. $3.54 \mathrm{mg}=$ $\qquad$ dg
7. $28.6 \mathrm{~g}=$ $\qquad$ hg
8. $910 \mathrm{~m}=$ $\qquad$ dm
9. $0.006700 \mathrm{~kg}=$ $\qquad$ cg
10. $1488 \mathrm{~cm}=$ $\qquad$ hm
11. $42.68 \mathrm{~L}=$ $\qquad$ kL
12. $2.78 \mathrm{~cm}=$ $\qquad$ km
13. $5.44 \mathrm{~m}=$ $\qquad$ cm
14. $15.82 \mathrm{~mL}=$ $\qquad$ $\mathrm{cm}^{3}$
15. $0.0568 \mathrm{~g}=$ $\qquad$ mg
16. $0.178 \mathrm{mg}=$

$\qquad$

$$
\text { 17. } 85.4 \mathrm{~cm}=
$$

$\qquad$ km
18. $52.13 \mathrm{dg}=$ $\qquad$ mg
19. $11.50 \mathrm{cL}=$ $\qquad$ dkL
20. $696.7 \mathrm{~m}=$ $\qquad$ mm
21. $7.050 \mathrm{~L}=$ $\qquad$ mL
22. $9.133 \mathrm{~g}=$ $\qquad$ kg
23. $8.24 \mathrm{~km}=$ $\qquad$ dm
24. $43.6 \mathrm{~m}=$ $\qquad$ cm
$\qquad$ Date: $\qquad$

1. Nickolai lives at one end of Oregon Trail. Sydney lives at the other end of the trail. It is 5.8 kilometers from one end of Oregon Trail to the other. If Nickolai walks 2.79 kilometers toward Sydney's house, how many more METERS does he have to walk to get there?
2. Adam had the chicken pox and had to stay inside even though he didn't feel very bad at all. He decided to make a cake to surprise his mother. The recipe said he needed 4 deciliters of milk. How many LITERS of milk did he need?
3. Xion and Kyndol wanted to have a contest to see which of their paper airplanes could fly the longest distance. Xion's plane flew 4 meters. Kyndol's plane flew 79 centimeters. How much further did Xion's plane fly in METERS?
4. Nala's boyfriend gave her a heart-shaped box of candy with 0.79 kilograms of candy in it. Madysin was jealous because her boyfriend only gave her 0.3 kilograms of candy. How many GRAMS more did Nala get?
5. Adrienne was given a tiny lamb by her aunt. The lamb was a runt and had to be fed by hand. Every 3 hours Adrienne had to give it 290 milliliters of milk. How much milk, in LITERS, will the lamb get in 24 hours?
$\qquad$
$\qquad$

Instructions: Convert each degree measure to radians. Shade or color your path as you go.

$\qquad$
$\qquad$

Instructions: Convert each radian measure to degrees. Shade or color you path as you go.


Name:

## Data

1. The table shows the relationship between students' time studying for a test and their test score. Use the data below to answer the following questions.
a. Calculate the mean, median, and mode of minutes studied.
b. Calculate the mean, median, and mode of the grades.

| Table |
| :---: |
| minutes <br> studied grades <br> 20 30 <br> 40 40 <br> 50 40 <br> 60 20 <br> 60 60 <br> 60 95 <br> 70 75 <br> 80 75 <br> 90 90 <br> 90 95 |

c. Make a scatter plot of the data. Choose and label an appropriate scale. Label the axis and scatter plot. Plot and label the mean point. Draw a line of best fit.

2. The table shows the number of hours students slept and their Schroeder on an exam. Use the data below to answer the following questions.

| Hours Slept | 8 | 7 | 7 | 8 | 6 | 5 | 7 | 4 | 9 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Test Score | 83 | 86 | 74 | 88 | 76 | 63 | 90 | 60 | 89 | 81 |

a. Calculate the mean, median, and mode of the hours slept.
b. Calculate the mean and the median of the test score.
c. Make a scatter plot of the data. Choose and label an appropriate scale. Label the axis and scatter plot. Plot and label the mean point. Draw a line of best fit.

d. Does there appear to be a relationship between hours slept and test score?
e. Based on the graph, predict what the median test score would be if the student slept 6.5 hours.
3. The table shows the height and weight of four $8^{\text {th }}$ grade boys. Use the data below to answer the following questions.
a. Calculate the mean and median
of the height.
b. Calculate the mean and the median of the weight.
c. Make a scatter plot of the data. Choose and label an appropriate scale. Label the axis and scatter plot. Plot and label the mean point. Draw a line of best fit.

d. Does there appear to be a relationship between height and weight?
e. Based on the graph, predict what the median weight would be for an $8^{\text {th }}$ grade boy 5.5 feet tall.

## Solving Multi-Step Equations

Directions: You need to earn $\qquad$ points on this assignment. You get to choose which problems to do. Solve the equation. Justify each step (aka show your work!).

## 1 point each

1) $x+5=8$
2) $n-6=-7$
3) $4 q=52$
4) $\frac{x}{6}=8$

## 2 points each

5) $3 w+7=19$
6) $\frac{a}{3}+4=6$
7) $8 y+3 y=44$
8) $\frac{h+6}{5}=2$

3 points each
9) $4(x+5)=32$
10) $6+5(m+1)=26$
11) $27=3 c-3(6-2 c)$
12) $\frac{2 x+26}{5}=3 x$
12) $\frac{x-3}{2}+8=20$
12) $5 p-9=2(p+6)$

## How many months of the year have 28 days?

Use the slope ( $m$ ) \& the y-intercept (b) to graph each equation below. When graphed, the line will cross through a letter. Write this letter in each box that contains that number below.


| 4 | 5 | 6 |
| :--- | :--- | :--- |

Name:

## Linear Equations and Rates of Change

Use the slope formula to find the rate of change between the two points.

1. $(0,-4)$ and $(-3,5)$
2. $(-3,7)$ and $(9,-1)$
3. $(9,5)$ and $(-6,10)$
4. $(7,7)$ and $(1,2)$
5. (-4, -4) and (4, -2)
6. $(-5,3)$ and (3 1)
7. $(-5,4)$ and $(0,-3)$
8. $(8,0)$ and $(3,0)$

Write the formula for each of the given graphs.
9.


Slope:
y-intercept:

Equation:
10.


Slope:
11.


Slope:
y-intercept:

Equation:
12.


Slope:
y-intercept:

Equation:
13.


Slope:
y-intercept:

Equation:
14.


Slope:
y-intercept:
15.


Slope:
y-intercept:

Equation:
16.


Slope:
y-intercept:

Equation:

Name:

## Rearrange Equations

Rearrange the equations to solve for the given variable. Show all steps.

1. Solve for a $\quad d=v_{1} \Delta \mathrm{t}+\frac{1}{2} a \Delta t^{2}$
2. Solve for $v_{1} \quad d=\left(\frac{v_{1}+v_{2}}{2}\right) \Delta \mathrm{t}$
3. Solve for $f \quad a_{c}=4 \pi^{2} r f^{2}$
4. Solve for $T \quad P V=n R T$
5. Solve for $v$

$$
L_{m}=L_{s} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

6. Solve for $\lambda \quad E=\frac{h c}{\lambda}$
7. Solve for $C \quad c^{2}=a^{2}+b^{2}-2 a b \cos C$
8. Solve for $T \quad v=\sqrt{\frac{3 R T}{M}}$
9. Solve for $M_{2 .} \frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$
10. Solve for $L \quad T=2 \pi \sqrt{\frac{L}{g}}$
11. Solve for $k \quad T=2 \pi \sqrt{\frac{m}{k}}$

Name:

## System of Equations

Solve each system of equations. Show all your work and check your answers.

| $\text { 1.) } \begin{aligned} y & =-2 \\ y & =4 x+6 \end{aligned}$ | $\text { 2.) } \begin{aligned} y & =3 x \\ y & =-5 x-8 \end{aligned}$ |
| :---: | :---: |
| $\text { 3.) } \begin{aligned} y & =-4 x+5 \\ y & =2 x-7 \end{aligned}$ | $\text { 4.) } \begin{gathered} 2 x+3 y=12 \\ x+y=5 \end{gathered}$ |
| $\text { 5.) } \begin{array}{rl} x & x y-1 \\ x & +2 y=9 \end{array}$ | $\text { 6.) } \begin{aligned} & x-y=2 \\ & 4 x-3 y=11 \end{aligned}$ |
| $\text { 7.) } \begin{gathered} y=2 x-5 \\ 4 x-y=7 \end{gathered}$ | $\text { 8.) } \begin{aligned} & x=4+y \\ & 2 x-3 y=1 \end{aligned}$ |

$\qquad$
$\qquad$
Solve each inequality and graph the solution on the number line.


Name:
Inequality Notation
Write the graph with inequality notation.
1.

2.

3.

4.

5.

6. $\mathrm{H}_{0}$ : $\div$ -
7.

8.

9.

10.

11.

12.


Name: $\qquad$

## Graphing Quadratic Functions in Standard. Vertex, and Intercept Form

Directions: Graph each quadratic function.

## Standard Form

$$
y=-x^{2}-8 x-17
$$


$y=x^{2}+4 x+3$

$y=x^{2}+2 x-1$


## Vertex Form





## Intercept Form



Name:

## Quadratics

Find the factored form, then solve for the roots of the given quadratics.

1. $x^{2}+10 x+9=0$
2. $x^{2}-49=0$
3. $x^{2}-12 x+27=0$
4. $x^{2}-2 x-24=0$
5. $x^{2}-11 x-60=0$

Solve for the roots of the given quadratics, then multiply to write in the quadratic in standard form.
6. $3 x(x+9)=0$
7. $2(x-2)(x+2)=0$
8. $(x-2)(x+9)=0$
9. $(5 x+1)(x-3)=0$
10. $(x-4)(x+4)=0$

Name: $\qquad$ Date: $\qquad$ Period: $\qquad$

Write the equation in exponential form.

$$
\begin{aligned}
& 1 . \log _{9} 3=\frac{1}{2} \\
& 2 . \log _{5} \frac{1}{25}=-2
\end{aligned}
$$

$\qquad$ 3. $\log _{w} t=c$

Write the equation in logarithmic form.
4. $\frac{1}{2}^{-3}=8$
5. $5^{3}=125$
6. $d^{a}=n$

Evaluate each logarithm. Each answer should be a whole number.
7. $\log _{9} 81$
8. $\log _{5} 125$ $\qquad$ 9. $\log _{\frac{1}{2}} \frac{1}{2}$
10. $\log _{12} 144$
$\qquad$
$\qquad$ 11. $\log _{6} 1$
12. $\log _{\frac{2}{3}} \frac{4}{9}$

Evaluate each logarithm. Each answer should be negative.
$\qquad$ 13. $\log _{9} \frac{1}{9}$ $\square$ 14. $\log _{\frac{1}{5}} 25$
$\ldots$ 15. $\log _{\frac{1}{3}} 27$

Evaluate each logarithm. Each answer should be a fraction.
$\qquad$ 16. $\log _{81} 9$
17. $\log _{8} 2$
__18. $\log _{16} 4$

Evaluate each logarithm. Each answer should be a negative fraction.
__19. $\log _{8} \frac{1}{2}$
__20. $\log _{\frac{1}{9}} 3$
__21. $\log _{\frac{1}{8}} 2$

Evaluate each common logarithm.
__22. $\log 1$
23. $\log 0.01$
24. $\log 1,000$

Evaluate each logarithm. Then, use the table below to match your answers to complete the riddle.
25. $\log _{5} 25$
27. $\quad \log _{9} 1$
29. $\quad \log _{49} 7$
31. $\log 10$
33. $\quad \log _{3} 81$
34. $\quad \log _{25} \frac{1}{5}$

| -2 | $-\frac{1}{2}$ | 0 | 1 | 3 | $\frac{1}{2}$ | -1 | 2 | 4 | $\frac{1}{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | E | G | A | E | I | M | E | T | R |

What did the acorn say when he grew up?


## EXPONENTIAL FUNCTIONS <br> Graptic Organizer



Name:

## Distance and Midpoint Map Activity

Use the map to answer the following questions. Give the unit distance and then convert your answers to miles for the distance problems. (Round to nearest tenth)

1. What is the distance between the point in Maine and Tennessee?
2. Find the distance between the point in North Dakota and Oklahoma.
3. Find the distance from the point in California to Kentucky.
4. What is the distance from the point in Washington to the bottom tip of Florida?
5. Find the distance from the point central Texas to the point in Utah. (Use decimal)
6. Find 2 more distances of you choice: write them coordinates of the point selected below and mark points on the map. Then calculate the distances.
7. Find the midpoint between Maine and California. What state does the midpoint lie in?
8. Find the midpoint between Washington and Kentucky. What state does the midpoint lie in?
9. Determine the midpoint between North Carolina and Utah. Then find the distance between North Carolina and the midpoint.
10. The point in Oklahoma is the midpoint between the point in Texas and the coordinates of a point in what other state? Give the coordinates and the state in which it lies.

$\qquad$

## Missing Angles in Triangles

The sum of the angles of any triangle is $\qquad$
Find all the missing angles in the triangles. Write each answer on the line provided beside the corresponding letter.

$\qquad$
$\qquad$

## Missing Angles in Triangles

The sum of the angles of any triangle is $\qquad$
Find all the missing Angles in the triangles. Write each answer on the line provided beside the corresponding letter.
Notice that angle C is in an equilateral triangle and angle $D$ is in an isosceles triangle.



Use the circle above to write the name using proper notation for the following:
Center: $\qquad$

Radius: $\qquad$
Diameter: $\qquad$

Chord: $\qquad$

Arc: $\qquad$

Central Angle: $\qquad$
Semicircle: $\qquad$
\# of Radii: $\qquad$

Longest Chord: $\qquad$

Shortest Arc: $\qquad$
\# of Diameters: $\qquad$

Central Obtuse Angle: $\qquad$


Use the circle above to write the name using proper notation for the following:

Center: $\qquad$

Radius: $\qquad$

Diameter: $\qquad$

Chord: $\qquad$

Arc: $\qquad$
Central Angle: $\qquad$

Semicircle: $\qquad$
\# of Radii: $\qquad$

Longest Chord: $\qquad$

Shortest Arc: $\qquad$
\# of Diameters: $\qquad$

Central Obtuse Angle: $\qquad$

## Area and Circumference of Circles

Directions: Find the area and circumference of the circles below. Round your answer to the tenths place.
1.

3.

4.


Name:

## Area and Perimeter

Draw pictures to help you set up the problems. Label your answers and show all work!

1. An index card has a length of 7 cm and a width of 4 cm . What is its perimeter?
2. A triangular-shaped plot of land has a base of 15 meters and a height of 6 meters. What is the area?
3. The perimeter of a square is 220 in . What is the length of each side?
4. A parallelogram has a base of 4 cm and a height of 6 cm . What is the area?
5. If one side of a stop sign measures 12 inches, what is its perimeter?
6. A trapezoid has bases of 7 cm and 5 cm , and a height of 3 cm . What is its area?
7. A rectangular piece of cardboard has a length of 16 inches and an area of 19 square inches. What is its width?
8. A chessboard has an area of 144 square inches. What is its perimeter?
9. The area of a triangle is 63 square millimeters. If its height is 14 millimeters, what is the length of its base?
10. If the area of a parallelogram is 52.78 square centimeters and the height is 6.2 cm , what is the length of the base?
11. A rectangular ice-skating rink measures 50 ft by 75 ft .
a. If it costs $\$ 4.50$ per foot to build a railing, how much would it cost to completely enclose the rink with a railing?
b. If the skating rink allows one person for every 10 square feet of ice, how many people are allowed in the rink at one time?

Name:

## Volume and Surface Area Review Packet

Find the volume of each figure. Use 3.14 for pi and round to the hundredths place if necessary.
(1)

(2)

(3)

(4)

(5)
(6)


Find the volume of each figure. Use 3.14 for pi and round to the hundredths place if needed.


Height of pyramid $=6$ in
(8)

(9)

(10)

(11)


Name $\qquad$ 3D Shapes
Date:
Faces, corners, edges!


I am a $\qquad$
I have $\qquad$ faces.

I have $\qquad$ corners.

I have $\qquad$ edges.


I am a $\qquad$
I have $\qquad$ faces.

I have $\qquad$ corners.

I have $\qquad$ edges.

I am a $\qquad$
I have $\qquad$ faces.

I have $\qquad$ corners.

I have $\qquad$ _ edges.

I am a $\qquad$
I have $\qquad$ faces.

I have $\qquad$ corners.

I have $\qquad$ edges.


I am a $\qquad$
I have $\qquad$ faces.

I have $\qquad$ corners.

I have edges.

I am a $\qquad$
I have $\qquad$ faces.

I have $\qquad$ corner.

I have edges.
$\qquad$ Date $\qquad$

## Trigonometry: Sine Ratio

Round all your answers to the nearest 3 significant figures (s.f.)
Find the missing sides
1.

3.

2.

4.


Find the missing angles
5.

6.

8.

$\qquad$

## Trigonometry: Cosine Ratio

Round all your answers to the nearest 3 significant figures (s.f.)
Find the missing sides
1.

3.


Find the missing angles
5.

6.

8.

$\qquad$ Date $\qquad$

## Trigonometry: Tangent Ratio

Round all your answers to the nearest 3 significant figures (s.f.)
Find the missing sides
1.

12.3 cm
3.

2.

4.


Find the missing angles
5.

6.

8.


Operations with fractions
a. https://www.youtube.com/watch?v=PXC74Tm7yBY

## Solve Expressions

a. https://www.youtube.com/watch?v=8NCwKUnlbRk

## Simplify Algebraic Fractions

a. https://www.youtube.com/watch?v=WSQh4o3yu4|

## Percent, Ratio, and Percent Change

a. https://youtu.be/MkpbtCRwcCE
b. https://www.youtube.com/watch?v=CT6Iqlb7urs
c. https://www.youtube.com/watch?v=5nZEUpZX_P0

## Proportions

a. https://www.youtube.com/watch?v=GhC60BmRO2Y

## Metric Conversion

a. https://www.youtube.com/watch?v=uHaKyNplino

## Degree and Radians Conversion

a. https://youtu.be/O3jvUZ8wvZs
b. https://youtu.be/z0-1gBy1ykE

## Data Analysis

a. https://www.youtube.com/watch?v=B1HEzNTGeZ4
b. https://www.youtube.com/watch?v=NcgRa0uotXs
c. https://www.youtube.com/watch?v=8ODFBfEIX k

## Solving multi-step Equations

a. https://www.youtube.com/watch?v=olVpjrD4YvQ
b. https://www.youtube.com/watch?v=leNCHdO5Lec
c. https://www.youtube.com/watch?v=76E9K3JzjDM

## Graphing Linear Equation

a. https://www.youtube.com/watch?v=ruTcNEIXdzQ

## Linear Equations and Rates of Change

a. https://www.youtube.com/watch?v=dfSejN8TJNY
b. https://www.youtube.com/watch?v=qPJzMboAjl8

## Rearrange Equations

a. https://www.youtube.com/watch?v=5xcMQlshSJM
b. https://www.youtube.com/watch?v=5xcMQlshSJM

## System of Equations

a. https://www.youtube.com/watch?v=oKqtgz2eo-Y
b. https://www.youtube.com/watch?v=nok99JOhcjo
c. https://www.youtube.com/watch?v=SpkvJ7N2Adc

## Solve Inequalities on a Number Line

a. https://www.youtube.com/watch?v=S_GXAF6xV8Q

## Inequality Notation

a. https://www.youtube.com/watch?v=V6Tw_mUmq6o
b. https://www.youtube.com/watch? v=LQhhGqk7C88
c. https://www.youtube.com/watch?v=4W5KYIRz2fM

## Graphing Quadratic Functions

a. https://www.youtube.com/watch?v=jGT35UcmjAc

## Factoring and solving quadratic equations

a. https://www.youtube.com/watch? v=qeByhTF8WEw

## Logarithms

a. https://www.youtube.com/watch?v=f0C1KL7GkqY
b. https://www.youtube.com/watch?v=aD8HGqmD39Y

## Exponential Functions

a. https://www.youtube.com/watch?v=tAaDItpC8OI

## Distance and Midpoint

a. https://www.youtube.com/watch?v=e7d0wbDCwjk

## Triangle Sum Theorem

a. https://www.youtube.com/watch?v=nVFzV4-uOnc

## Parts of Circle

a. https://www.youtube.com/watch?app=desktop\&v=SULeam8jQfE

## Circumference and Area of Circle (do not use 3.14, please use $\pi$ button on your calculator)

a. https://www.youtube.com/watch?v=JC2kRM3jTOo
b. https://www.youtube.com/watch?v=_E0C5ECDSOU

## Area and Perimeter

a. https://www.youtube.com/watch?v=AAY1bsazcgM
b. https://www.youtube.com/watch?v=Isx1W2zuwHM
c. https://www.youtube.com/watch?v=CAXJh2avnu8

## Volume and Surface Area

a. https://www.youtube.com/watch?v=jREM6POLQUM
b. https://www.youtube.com/watch? v=i31InzuKabY
c. https://www.youtube.com/watch?v=dNDbRbHNXFQ
d. https://www.youtube.com/watch?v=JUgRPUSxoEc
e. https://www.youtube.com/watch?v=Pgxlad4c1ZI
f. https://www.youtube.com/watch?v=e7qgvHbdBuw
g. https://www.youtube.com/watch?v=JQD__LQTrYA
h. https://www.youtube.com/watch?v=KhObCvV73go

## 3D Shape Terminology

a. https://www.youtube.com/watch?v=e2Dj1LsYM84

Trigonometry Ratios
a. https://www.youtube.com/watch?v=jUSxUk9BX-c

