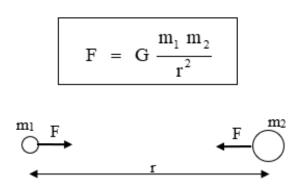
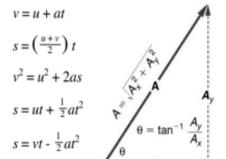

Review of 9th Grade Accelerated Physics and Chemistry

- A. About Science Chapter 1
 - a. The Scientific Hypothesis
 - i. Falsifiable Capable of being tested and proven wrong (but hasn't been proved wrong yet)
 - ii. Experiments can support or disprove a hypothesis, but they can't prove it
 - b. The Scientific Experiment
 - i. Remain objective and observe what happens rather than what you want to have happen
 - ii. Have one independent variable that you are changing on purpose to see the effect, if any, on the dependent variable
- B. Describing Motion Chapter 2
 - a. Mass is a measure of inertia
 - i. It is a resistance to change in motion and measured in kilograms
 - b. Net Force
 - i. A push or a pull that causes acceleration
 - ii. Weight is a force and measured in newtons
 - c. Density = mass divided by volume
 - i. Denser objects sink below less dense objects when allowed to move freely
 - d. Equilibrium = Net force equals zero, so acceleration equals zero
 - i. Velocity is constant in equilibrium. It could be zero, but it doesn't have to be.
 - e. Support Force (Normal Force) = The force of a surface keeping you from going though it
 - i. It acts perpendicular (normal) to the surface
 - ii. It is a produce of the electrostatic forces between molecules
 - f. Friction opposes motion in direction
 - i. Air resistance is an example of friction
 - ii. It is dependent on velocity and the surface area and shape of the objects involved
 - g. Speed and Velocity
 - i. Speed is distance divided by time. It is a scalar.
 - ii. Velocity is speed with direction. It is a vector.
 - h. Acceleration
 - i. Change in velocity over time
 - ii. Can be solely a change in direction, as with circular motion
- C. Newton's Laws of Motion Chapter 3
 - a. 1st Law Law of Inertia Objects maintain their state of motion unless acted upon by an unbalanced force
 - b. 2nd Law Force = mass times acceleration (Force = change in momentum over time) F=ma
 - c. 3rd Law Forces occur in equal but opposite pairs
 - d. Vectors magnitude and direction
- D. Momentum and Energy Chapter 4
 - a. Momentum = mass x velocity
 - b. Collisions
 - i. Elastic bounce
 - ii. Inelastic stick together
 - c. Impulse = change in momentum over time
 - d. Conservation of momentum Unless an outside force (like friction) acts on a system, the momentum at the beginning and end is the same

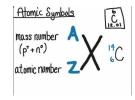

$$\begin{split} \mathsf{P} &= \mathsf{m} \mathsf{v} & \mathsf{F} \mathsf{t} = \mathsf{m} \mathsf{v}_2 - \mathsf{m} \mathsf{v}_1 & \mathsf{m}_1 \mathsf{v}_1 = - \, \mathsf{m}_2 \mathsf{v}_2 \\ \mathsf{m}_1 \mathsf{v}_1 + \mathsf{m}_2 \mathsf{v}_2 &= \mathsf{m}_1 \mathsf{v}_3 + \mathsf{m}_2 \mathsf{v}_4 & \mathsf{m}_1 \mathsf{v}_1 + \mathsf{m}_2 \mathsf{v}_2 = (\mathsf{m}_1 + \mathsf{m}_2) \, \mathsf{v}_3 \end{split}$$

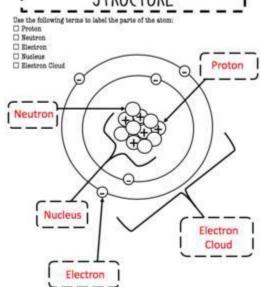
- e. Energy measured in joules
- f. Power = Work divided by time measured in watts
- g. Potential Energy stored
 - i. Gravitational = (mass) times (10 m/s²) times (change in height)
- h. Kinetic Energy motion
 - i. Kinetic energy = (1/2) times (mass) times (velocity squared)
- i. Work-Energy Theorem
 - i. Work done on an object increases its kinetic energy
 - ii. W = Fd = (1/2) times (mass) times (velocity squared)

W = FdP = W/tF = ma $PE_g = mgh$ KE = $(1/2)mv^2$ $W_T = \Delta KE$


- j. Conservation of Energy
 - i. In the absence of external work input or output, the energy of a system remains unchanged.
 - ii. Energy cannot be created or destroyed. It can only be transformed (and one form is mass).
- k. Machines Generally lessen force needed to do the same work by increasing the distance
 - i. Pulleys
 - ii. Levers
- I. Efficiency = (work done) divided by (energy used)
- E. Gravity Chapter 5
 - a. Newton's Law of Universal Gravitation F = GMm/r^2
 - b. Acceleration due to gravity on the surface of Earth is about 10 m/s^2
 - c. Weight = What the support force balances when you are not falling
 - d. Projectile Motion
 - i. horizontal and vertical motion are separate
 - ii. gravity only affects vertical motion
 - iii. drag slows projectiles and shortens range
 - iv. Air resistance is affected by velocity squared and frontal surface area
 - v. When the force due to gravity is balanced by the force due to air resistance while falling, you have reached terminal velocity and no longer accelerate
 - vi. Complementary launch angles produce the same range (angles that add to 90 °)
 - vii. Kinematic equations for linear motion with constant acceleration (formulas will be on the test)
 - 1. Find time
 - 2. Find range
 - 3. Find maximum height
 - 4. Including non-zero angles

 $G = 6.67 \times 10^{-11} N m^2 / kq^2$


Variable	Symbol	
t	time taken	
s	distance travelled	
u	initial velocity	
v	final velocity	
a	acceleration	


Table 1.2.1 - Variables used in uniformly accelerated motion equations

- e. Satellites fall around the object they orbit, parallel to its surface
 - i. Circular orbits have a constant speed
 - ii. Elliptical orbits have a varying speed
 - iii. All round orbits have a centripetal acceleration pulling them inward and they stay in orbit with their continual tangential velocity
 - iv. Orbital speed for Earth is between ~8,000 and 11,200 m/s
- F. Heat Chapter 6
 - a. Heat The thermal energy that flows from a substance of higher temperature to a substance of lower temperature, commonly measured in calories, Calories (kilocalories), or joules
 - b. Thermodynamics The entropy (disorder) of a system will always increase
 - c. Temperature: Kelvin is an absolute measurement of temperature, and reaching absolute zero degrees Kelvin is not possible
 - d. Specific Heat Capacity The quantity of heat required to raise the temperature of a unit mass of a substance by one degree Celsius or Kelvin
 - i. Water has a very high one compared to most substances, meaning it holds a lot of heat before changing state and the boiling and freezing points are far apart
 - e. Heat Transfer
 - i. Occurs because of a temperature differences
 - 1. Conduction Touching Transfer by molecular and electronic collisions
 - 2. Convection Material exchange Flowing currents in fluids
 - 3. Radiation Not Touching Transfer by electromagnetic waves
- G. Electricity and Magnetism Chapter 7
 - a. Electrical Force and Charge
 - i. Charged particles produce electromagnetic fields
 - ii. Opposite charges attract (positive to negative), like charges repel
 - b. Coulomb's Law: $F = kq_1q_2/r_2$
 - i. Strength of electrostatic force is inversely proportional to the distance between the charges squared
 - ii. It depends on the charges involved
 - iii. Negative force implies attraction, positive implies repulsion
 - iv. It is much stronger than gravitational force comparatively
 - c. Conductors and Insulators
 - i. Conductors easily transfer energy
 - 1. Metals are all good conductors
 - ii. Insulators are poor conductions
 - 1. Plastics tend to be poor conductors
 - d. Ohm's Law: V = IR
 - i. Current: I flow of charges over time
 - ii. Voltage: V
 - iii. Resistance: R
 - e. Power: P=IV
 - f. Circuits
 - i. Series
 - ii. Parallel
 - g. Magnetic Force
 - i. Field goes from north to south
 - ii. Like poles repel, unlike poles attract
 - h. Electromagnetic Induction

- i. An electrical current produces a magnetic field and a force that can be transferred into motion: a motor
- ii. A changing magnetic field produces an electrical current: a generator
- H. Waves Sounds and Light Chapter 8
 - a. Transverse
 - i. Perpendicular to wave motion
 - ii. Light
 - b. Longitudinal
 - i. Parallel to wave motion
 - ii. Sound
 - c. Reflection Bouncing waves
 - d. Refraction Bending waves through a prism
 - e. Diffraction Bending waves around an obstacle
 - f. Interference Waves build each other up or cancel each other out depending on their relative phases
 - g. Wave-Particle Duality
 - i. Light can act like a wave and a particle
- I. Atoms and the Periodic Table Chapter 9
 - a. Elements Specific types of atoms
 - Atoms know how to read the periodic table symbols for mass number, atomic number, atomic symbol, neutrons, electrons, and ionization
 - c.
- i. Nucleus includes nucleons Mass Number
 - 1. Protons
 - a. Positive charge
 - b. Atomic Number
 - c. Relative mass of ~1 amu
 - d. Produce strong force and electromagnetic force
 - 2. Neutrons
 - a. Neutral
 - b. Relative mass of ~1 amu
 - c. Produce strong force
 - d. Find by taking the atomic mass the atomic number
 - e. Numbers vary by isotope
 - f. Having too many or too few makes the nucleus unstable and leads to radioactive decay via the weak force
- ii. Orbital Shell
 - 1. Electrons
 - a. Negative charge
 - b. Equals the Atomic Number unless ionized, relative mass of ~0 amu
 - c. Can be gained, lost, or shared in chemical reactions
 - d. Produce electromagnetic force
 - 2. s orbitals hold 2 electrons each
 - 3. p orbitals hold 6 electrons each (2 in each direction x, y, and z), d and f hold more, but most atoms commonly found try to have eight valence electrons like a noble gas, filling up the outer s and p orbitals

@ScienceDoodads

- d. Ions Charged atoms that have gained (-) or lost electrons (+)
- e. Isotopes elements with the same number of protons but different numbers of neutrons
- f. Periodic Table
 - i. Alkali Metals Group 1 Very reactive
 - ii. Alkali Earth Metals Group 2 Very reactive
 - iii. Halogens Group 17 Very reactive
 - iv. Noble Gasses Group 18 Mostly Inert and don't react
 - 1. Atoms want to have electron shells like these do naturally Octet Rule
 - v. Metals On the left and in the middle
 - vi. Nonmetals In the top right corner
- g. Spectroscope
 - i. Used to identify elements by analyzing the light they emit when they are made to glow by passing electricity through them and then using a combination of a slit and a prism in a spectroscope to separate out the resultant light
 - ii. The resultant pattern is the atomic spectrum
- J. The Atomic Nucleus and Radioactivity Chapter 10
 - a. Radioactivity lowers the energy level of the nucleus from an unstable state
 - i. Alpha Decay
 - 1. a Helium nucleus, so fairly large and easy to stop
 - 2. positively charged by 2, so quite able to damage DNA
 - 3. lowers the mass number by 4 and atomic number by 2, resulting in a new element
 - ii. Beta Decay
 - 1. An electron or a positron, so more difficult to stop
 - 2. Negatively or positively charged by 1, so able to damage DNA
 - 3. Changes the atomic number by 1, resulting in a new element
 - iii. Gamma Decay
 - 1. A high-energy photon, so very difficult to stop
 - 2. Able to damage DNA
 - 3. Doesn't change the atomic number or mass number
 - b. Strong Nuclear Force
 - 1. Produced by nucleons
 - 2. Only attractive
 - 3. Extremely short range
 - 4. Holds the nucleus together, combating the electromagnetic repulsion of the protons to each other
 - c. Half-Life
 - i. The time it takes half of an amount of a radioactive substance to decay
 - ii. Used to tell how long objects have been decaying and estimating age
 - iii. Exponential
 - d. Nuclear Fission
 - i. Splitting the nucleus into smaller daughter nuclei and usually some other neutrons, usually by hitting it with a neutron
 - ii. The neutrons produced can hit other nuclei, causing a chain reaction when substance is over the critical mass of fissionable material
 - iii. Releases energy when done on elements higher in atomic number than iron
 - e. Mass-Energy Equivalence
 - i. E = mc^2
 - f. Nuclear Fusion
 - i. Combining nuclei smaller than iron to release energy

K. Investigating Matter – Chapter 11

- a. Phase Changes
 - i. Physical change the arrangement of the molecules but not the molecules themselves
 - ii. Solid <-> Liquid <-> Gas
 - iii. Ex. Melting ice
- b. Chemical Changes
 - i. Reactions make new substances by changing the molecular bonds between atoms
 - ii. Ex. Mixing baking soda and vinegar
- c. Compounds
 - i. Made of multiple atoms
 - ii. Named by their relative positions on the periodic table and their number
- d. Chemical Bonds and Mixtures Chapter 12
 - i. Electron-Dot Structures
 - 1. Display valence electrons and suggest bonding types and configurations
 - 2. Valence electrons are the outer shell and determine reactivity
 - 3. Most elements want a noble gas like configuration because it is lower in energy, so they gain, lose, or share electrons
 - ii. Ionic Bonds
 - 1. Electromagnetic attractions between ions
 - a. Anions negative, gained electrons
 - b. Cations positive, lost electrons
 - 2. Predictable based on position on the periodic table
 - 3. Ex. Table Salt Na⁺¹Cl⁻¹
 - iii. Covalent Bonds
 - 1. Atoms sharing electrons
 - 2. Polarity is affected proportionally which atom gets the electrons the most due to their relative electronegativities
 - 3. Ex. Water H₂O
- e. Water is weird
 - i. Specific heat capacity is high
 - ii. Density is lower as a solid than a liquid (except between 0 and 4 degrees C), so most ice floats
 - iii. Exists in 3 phases naturally here on Earth
 - iv. Is polar and so a good solvent
 - v. Exhibits hydrogen bonding between molecules and so has surface tension, adhesion, and cohesion (it's sticky and wet and clumps into droplets)
- L. Chemical Reactions Chapter 13
 - a. Chemical Equations
 - i. Reactants -> Products
 - ii. Need to be balanced due to conservation of mass
 - 1. Exothermic give off heat (and feel hot)
 - 2. Endothermic take in heat (and feel cold)